Логика высказываний - définition. Qu'est-ce que Логика высказываний
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Логика высказываний - définition


Логика высказываний         

раздел математической логики (См. Логика), посвященный изучению логических форм сложных высказываний, образованных из элементарных высказываний с помощью связок, аналогичных союзам "и", "или", "если..., то...", отрицания ("не") и др.

ЛОГИКА ВЫСКАЗЫВАНИЙ         
раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из т. н. элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью логических операций конъюнкции ("и"), дизъюнкции ("или"), отрицания ("не"), импликации ("если..., то...") и др. Логику высказываний, задаваемую системой постулатов (аксиом и правил вывода), называют исчислением высказываний.
Логика высказываний         
Логика высказываний, пропозициональная логика ( — «высказывание») или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.

Wikipédia

Логика высказываний
Логика высказываний, пропозициональная логика ( — «высказывание») или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Qu'est-ce que Л<font color="red">о</font>гика выск<font color="red">а</font>зываний - définition